1. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Logic Comput. 4(3), 217–247 (1994). Revised version of Max-Planck-Institut für Informatik technical report, MPI-I-91-208, 1991
2. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, chap. 2, pp. 19–99. Elsevier, Amsterdam (2001)
3. Lecture Notes in Computer Science;M Bromberger,2022
4. Lecture Notes in Computer Science;M Bromberger,2021
5. Bromberger, M., Gehl, T., Leutgeb, L., Weidenbach, C.: A two-watched literal scheme for first-order logic. In: Konev, B., Schon, C., Steen, A. (eds.) Proceedings of the Workshop on Practical Aspects of Automated Reasoning Co-located with the 11th International Joint Conference on Automated Reasoning (FLoC/IJCAR 2022), CEUR Workshop Proceedings, Haifa, Israel, 11–12 August 2022, vol. 3201. CEUR-WS.org (2022)