1. Aziz, F., Wong, A.S.W., Welsh, J., Chalup, S.K.: Performance comparison of manifold alignment methods applied to pendulum dynamics. In: Proceedings of the Applied Informatics and Technology Innovation Conference. Springer (2016, in press)
2. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003).
https://doi.org/10.1162/089976603321780317
3. Bocsi, B., Csato, L., Peters, J.: Alignment-based transfer learning for robot models. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2013).
https://doi.org/10.1109/IJCNN.2013.6706721
4. Chalodhorn, R., Grimes, D.B., Grochow, K., Rao, R.P.N.: Learning to walk through imitation. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI 2007, pp. 2084–2090. Morgan Kaufmann Publishers Inc., San Francisco (2007)
5. Chalodhorn, R., Rao, R.N.: Learning to imitate human actions through eigenposes. In: Sigaud, O., Peters, J., (eds.) From Motor Learning to Interaction Learning in Robots. Studies in Computational Intelligence, vol. 264, pp. 357–381. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-05181-4-15