Methods and Limits of Data-Based Decision Support in Production Management

Author:

Kiesel Raphael,Gützlaff Andreas,Schmitt Robert H.,Schuh Günther

Abstract

AbstractThe volatility of today’s markets is constantly rising due to, i.e., the rapid emergence of new and innovative competitors, changing government policies, and unknown market acceptance. This affects both short-term and long-term production management. While short-term production management must deal with a higher time sensitivity of decisions, long-term production management must deal with an increasing level of uncertainty in decisions. Thus, to stay competitive in the future, short-term production management must especially increase the implementation speed of decision, whereas long-term production management focuses on the improvement of decision quality in uncertain environments. Therefore, the Internet of Production (IoP) develops data-based decision support methods for both short-term and long-term production management, which are presented in this chapter. For short-term production management, data-based decision support methods are presented for quality control loops, production planning and control, as well as production system configuration. For long-term production management, methods are presented for factory planning, global supply chain management, and production network planning.

Publisher

Springer International Publishing

Reference28 articles.

1. acatech (2021) Modellierungs- und Simulationsbedarfe der intelligenten Fabrik. München

2. Alexander R (2020) Emerging roles of lead buyer governance for sustainability across global production networks. J Bus Ethics 162(2):269–290

3. Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy environment. Manag Sci 17(4):B-141–B-164

4. Brecher C, Klocke F, Schmitt R, Schuh G (2017) Internet of Production für agile Unternehmen: AWK Aachener Werkzeugmaschinen-Kolloquium, 18. bis 19. Mai 2017. Apprimus Verlag

5. Burggräf P, Adlon T, Schupp S, Salzwedel J (2021) Risk management in factory planning – a literature review. Procedia CIRP 104:1191–1196

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3