Revisiting the Shape-Bias of Deep Learning for Dermoscopic Skin Lesion Classification
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-031-12053-4_4
Reference35 articles.
1. Argenziano, G., Fabbrocini, G., Carli, P., De Giorgi, V., Sammarco, E., Delfino, M.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134(12), 1563–1570 (1998)
2. Barata, C., Ruela, M., Mendonça, T., Marques, J.S.: A bag-of-features approach for the classification of melanomas in dermoscopy images: The role of color and texture descriptors. In: Scharcanski, J., Celebi, M. (eds.) Computer Vision Techniques for the Diagnosis of Skin Cancer, pp. 49–69. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-39608-3_3
3. Betta, G., Di Leo, G., Fabbrocini, G., Paolillo, A., Sommella, P.: Dermoscopic image-analysis system: estimation of atypical pigment network and atypical vascular pattern. In: IEEE International Workshop on Medical Measurement and Applications, 2006. MeMea 2006. pp. 63–67. IEEE (2006)
4. Cassidy, B., Kendrick, C., Brodzicki, A., Jaworek-Korjakowska, J., Yap, M.H.: Analysis of the ISIC image datasets: usage, benchmarks and recommendations. Med. Image Anal. 75, 102305 (2022)
5. Chen, G., Peng, P., Ma, L., Li, J., Du, L., Tian, Y.: Amplitude-phase recombination: Rethinking robustness of convolutional neural networks in frequency domain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 458–467 (2021)
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. DocXclassifier: towards a robust and interpretable deep neural network for document image classification;International Journal on Document Analysis and Recognition (IJDAR);2024-06-25
2. The Reality of High Performing Deep Learning Models: A Case Study on Document Image Classification;IEEE Access;2024
3. DocXplain: A Novel Model-Agnostic Explainability Method for Document Image Classification;Lecture Notes in Computer Science;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3