1. Artelt, A., Hammer, B.: On the computation of counterfactual explanations - a survey. arXiv preprint arXiv:1911.07749 (2019)
2. Becker, B., Kohavi, R.: Adult. UCI Machine Learning Repository (1996). https://doi.org/10.24432/C5XW20
3. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2016), pp. 785–794. ACM, New York (2016). https://doi.org/10.1145/2939672.2939785
4. Credit Fusion, W.C.: Give me some credit (2011). https://kaggle.com/competitions/GiveMeSomeCredit
5. De Toni, G., Viappiani, P., Lepri, B., Passerini, A.: Generating personalized counterfactual interventions for algorithmic recourse by eliciting user preferences. arXiv preprint arXiv:2205.13743 (2022)