Publisher
Springer Nature Switzerland
Reference12 articles.
1. Ábrahám, E., Davenport, J.H., England, M., Kremer, G.: Deciding the consistency of non-linear real arithmetic constraints with a conflict driven search using cylindrical algebraic coverings. J. Log. Algebraic Methods Program. 119 (2021). https://doi.org/10.1016/j.jlamp.2020.100633
2. Bär, P., Nalbach, J., Ábrahám, E., Brown, C.W.: Exploiting strict constraints in the cylindrical algebraic covering. In: Satisfiability Modulo Theories (SMT 2023) (2023). https://ceur-ws.org/Vol-3429/paper13.pdf
3. Brown, C.W.: Improved projection for cylindrical algebraic decomposition. J. Symb. Comput. 32(5) (2001). https://doi.org/10.1006/jsco.2001.0463
4. Brown, C.W., Košta, M.: Constructing a single cell in cylindrical algebraic decomposition. J. Symb. Comput. 70 (2015). https://doi.org/10.1016/j.jsc.2014.09.024
5. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Automata Theory and Formal Languages (1975). https://doi.org/10.1007/3-540-07407-4_17