Probing Tree Physiology Using the Dual-Isotope Approach

Author:

Roden John,Saurer Matthias,Siegwolf Rolf T. W.

Abstract

AbstractThe environmental and physiological interpretation of stable isotope variation in organic matter is affected by many different and interacting factors. This is especially true when considering isotope variation in tree rings, which are influenced not only by leaf-level photosynthetic gas exchange processes but also by post-photosynthetic fractionation. It has been proposed that measuring multiple isotopes on the same sample may constrain such interpretations if one isotope provides independent information about important fractionation events that cause variation in another isotope. Here we describe one such “dual-isotope approach” where oxygen isotope variation (δ18O) is used to probe the effects of stomatal conductance on carbon isotope (δ13C) variation for the same sample. This chapter describes the development of this conceptual model, constraints on model applicability, particularly with respect to tree rings, and how it has been utilized to explore aspects of tree physiology.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3