Publisher
Springer Nature Switzerland
Reference42 articles.
1. Arroyo, D.M., Postels, J., Tombari, F.: Variational transformer networks for layout generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13642–13652 (2021)
2. Assael, Y., et al.: Restoring and attributing ancient texts using deep neural networks. Nature 603(7900), 280–283 (2022)
3. Barrere, K., Soullard, Y., Lemaitre, A., Coüasnon, B.: Training transformer architectures on few annotated data: an application to historical handwritten text recognition. Int. J. Doc. Anal. Recogn. (IJDAR), pp. 1–14 (2024)
4. Binmakhashen, G.M., Mahmoud, S.A.: Document layout analysis: a comprehensive survey. ACM Comput. Surv. 52(6), 109:1–109:36 (2019). https://doi.org/10.1145/3355610
5. Biswas, S., Banerjee, A., Lladós, J., Pal, U.: DocSegTr: an instance-level end-to-end document image segmentation transformer. arXiv preprint arXiv:2201.11438 (2022)