1. Benidis, K., et al.: Neural forecasting: Introduction and literature overview. arXiv (2020). https://doi.org/10.48550/arXiv.2004.10240
2. Challu, C., Olivares, K.G., Oreshkin, B.N., Garza, F., Mergenthaler, M., Dubrawski, A.: N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting (2022). https://doi.org/10.48550/arXiv.2201.12886
3. Chen, K., Chen, K., Wang, Q., He, Z., Hu, J., He, J.: Short-term load forecasting with deep residual networks. IEEE Trans. Smart Grid 10(4), 3943–3952 (2019). https://doi.org/10.1109/TSG.2018.2844307
4. Chodakowska, E., Nazarko, J., Nazarko, Ł: ARIMA models in electrical load forecasting and their robustness to noise. Energies 14(23), 7952 (2021). https://doi.org/10.3390/en14237952
5. European Commission: Questions and answers - making our energy system fit for our climate targets. (14 July 2021). https://ec.europa.eu/commission/presscorner/detail/en/qanda_21_3544. Accessed 7 Feb 2021