Publisher
Springer Nature Switzerland
Reference9 articles.
1. Benkhaldoun, F., Bradji, A.: A new generic super-convergence result in the divergence norm for primal dual mixed finite element schemes applied to parabolic equations and examples. In preparation
2. Benkhaldoun, F., Bradji, A.: Novel analysis approach for the convergence of a second order time accurate mixed finite element scheme for parabolic equations. Comput. Math. Appl. 133, 85–103 (2023)
3. Benkhaldoun, F., Bradji, A.: Two new error estimates of a fully discrete primal-dual mixed finite element scheme for parabolic equations in any space dimension. Results Math. 76/4, Paper No. 182 (2021)
4. Benkhaldoun, F., Bradji, A.: A new error estimate for a primal-dual Crank-Nicolson mixed finite element using lowest degree Raviart-Thomas spaces for parabolic equations. In: Large-Scale Scientific Computing, pp. 489–497. Lecture Notes in Computer Science, vol. 13127. Springer, Cham (2022)
5. Chen, H., Ewing, R., Lazarov, R.: Superconvergence of mixed finite element methods for parabolic problems with nonsmooth initial data. Numer. Math. 78(4), 495–521 (1998)