Estimation of Time-Dependent Transmission Rate for COVID-19 SVIRD Model Using Predictor–Corrector Algorithm

Author:

Luo Ruiyan,Herrera-Reyes Alejandra D.,Kim Yena,Rogowski Susan,White Diana,Smirnova Alexandra

Abstract

AbstractStable parameter estimation is an ongoing challenge within biomathematics, especially in epidemiology. Oftentimes epidemiological models are composed of large numbers of equations and parameters. Due to high dimensionality, classic parameter estimation approaches, such as least square fitting, are computationally expensive. Additionally, the presence of observational noise and reporting errors that accompany real-time data can make these parameter estimation problems ill-posed and unstable. The recent COVID-19 pandemic highlighted the need for efficient parameter estimation tools. In this chapter, we develop a modified version of a regularized predictor–corrector algorithm aimed at stable low-cost reconstruction of infectious disease parameters. This method is applied to a new compartmental model describing COVID-19 dynamics, which accounts for vaccination and immunity loss (from vaccinated and recovered populations). Numerical simulations are carried out with synthetic and real data for COVID-19 pandemic. Based on the reconstructed disease transmission rates (and known mitigation measures), observations on historical trends of COVID-19 in the states of Georgia and California are presented. Such observations can be used to provide insights into future COVID policies.

Publisher

Springer Nature Switzerland

Reference48 articles.

1. A. Smirnova, G. Chowell, Infect. Dis. Modell. 2(2), 268 (2017)

2. W. Kermack, A. McKendrick, Proc. R. Soc. London Ser. A 115(772), 700 (1927)

3. N.T. Bailey, The Mathematical Theory of Infectious Diseases and its Applications (Charles Griffin & Company, High Wycombe, 1975)

4. R. Schlickeiser, M. Kroger, Physics 3(2), 386 (2021)

5. Y. Mohamadou, A. Halidou, P. Kapen, Appl. Intell. 50(11), 3913 (2020)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3