Publisher
Springer Nature Switzerland
Reference15 articles.
1. Ruan, Y., Yuan, L., Yuan, W., He, Y., Lu, L.: Temperature compensation and pressure bias estimation for piezoresistive pressure sensor based on machine learning approach. IEEE Trans. Instrum. Meas. 70, 1–10 (2021). https://doi.org/10.1109/TIM.2021.3089236
2. Vitolo, P., Pau, D., Licciardo, G.D., Pesaturo, M., Bosco, S., Pennino, S.: Tiny compensation of pressure drift measurements due to long exposures to high temperatures. In: 2023 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 01–05 (2023). https://doi.org/10.1109/I2MTC53148.2023.10175998
3. Licciardo, G.D., et al.: Ultra-tiny neural network for compensation of post-soldering thermal drift in mems pressure sensors. In: 2023 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2023). https://doi.org/10.1109/ISCAS46773.2023.10181480
4. Ipc/jedec j-std-020c, moisture/reflow sensitivity classification for non-hermetic solid state surface mount devices. JEDEC Standards (2004)
5. STMicroelectronics: High-performance mems nano pressure sensor: 260–1260 hpa absolute digital output barometer. LPS22HH datasheet (2019)