Publisher
Springer Nature Switzerland
Reference40 articles.
1. Aïssat, R.: Détection de Chemins Infaisables : un Modèle Formel et un Algorithme. (Infeasible Path Detection : a Formal Model and an Algorithm). Ph.D. thesis, University of Paris-Saclay, France (2017). https://tel.archives-ouvertes.fr/tel-01567093
2. Aïssat, R., Gaudel, M., Voisin, F., Wolff, B.: A method for pruning infeasible paths via graph transformations and symbolic execution. In: International Conference on Software Quality, Reliability and Security, pp. 144–151. IEEE (2016). https://doi.org/10.1109/QRS.2016.26
3. Aïssat, R., Voisin, F., Wolff, B.: Infeasible paths elimination by symbolic execution techniques: proof of correctness and preservation of paths. Arch. Formal Proofs 2016 (2016). https://www.isa-afp.org/entries/InfPathElimination.shtml
4. Barbot, B., Basset, N., Beunardeau, M., Kwiatkowska, M.: Uniform sampling for timed automata with application to language inclusion measurement. In: Agha, G., Van Houdt, B. (eds.) Quantitative Evaluation of Systems. Lecture Notes in Computer Science, vol. 9826, pp. 175–190. Springer, Heidelberg (2016). https://doi.org/10.1007/S00453-016-0136-9
5. Lecture Notes in Computer Science;S Bardin,2018