Abstract
AbstractIn many synthesis problems, it can be essential to generate implementations which not only satisfy functional constraints but are also randomized to improve variety, robustness, or unpredictability. The recently-proposed framework of control improvisation (CI) provides techniques for the correct-by-construction synthesis of randomized systems subject to hard and soft constraints. However, prior work on CI has focused on qualitative specifications, whereas in robotic planning and other areas we often have quantitative quality metrics which can be traded against each other. For example, a designer of a patrolling security robot might want to know by how much the average patrol time needs to be increased in order to ensure that a particular aspect of the robot’s route is sufficiently diverse and hence unpredictable. In this paper, we enable this type of application by generalizing the CI problem to support quantitative soft constraints which bound the expected value of a given cost function, and randomness constraints which enforce diversity of the generated traces with respect to a given label function. We establish the basic theory of labelled quantitative CI problems, and develop efficient algorithms for solving them when the specifications are encoded by finite automata. We also provide an approximate improvisation algorithm based on constraint solving for any specifications encodable as Boolean formulas. We demonstrate the utility of our problem formulation and algorithms with experiments applying them to generate diverse near-optimal plans for robotic planning problems.
Publisher
Springer International Publishing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献