Improving Cyber-Threat Detection by Moving the Boundary Around the Normal Samples
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-57024-8_5
Reference79 articles.
1. Abdulhammed Alani R, Musafer H, Alessa A, Faezipour M, Abuzneid A (2019) Features dimensionality reduction approaches for machine learning based network intrusion detection. Electronics 8:322
2. Abri F, Siami-Namini S, Khanghah MA, Soltani FM, Namin AS (2019) Can machine/deep learning classifiers detect zero-day malware with high accuracy? In: 2019 IEEE international conference on big data (Big Data), pp 3252–3259
3. Al-Qatf M, Lasheng Y, Al-Habib M, Al-Sabahi K (2018) Deep learning approach combining sparse autoencoder with svm for network intrusion detection. IEEE Access 6:52843–52856
4. Aldweesh A, Derhab A, Emam AZ (2020) Deep learning approaches for anomaly-based intrusion detection systems: a survey, taxonomy, and open issues. Knowl-Based Syst 189:105124
5. AlEroud A, Karabatis G (2020) Sdn-gan: generative adversarial deep nns for synthesizing cyber attacks on software defined networks. In: Debruyne C, Panetto H, Guédria W, Bollen P, Ciuciu I, Karabatis G, Meersman R (eds) On the move to meaningful internet systems: OTM 2019 workshops. Springer International Publishing, Cham, pp 211–220
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Attack detection model for BCoT based on contrastive variational autoencoder and metric learning;Journal of Cloud Computing;2024-08-02
2. Multi-scale Convolutional Feature Fusion Network Based on Attention Mechanism for IoT Traffic Classification;International Journal of Computational Intelligence Systems;2024-02-19
3. PANACEA: a neural model ensemble for cyber-threat detection;Machine Learning;2024-01-12
4. Zero-day Attack Solutions Using Threat Hunting Intelligence: Extensive Survey;2022 International Conference on Data Analytics for Business and Industry (ICDABI);2022-10-25
5. XAI to Explore Robustness of Features in Adversarial Training for Cybersecurity;Lecture Notes in Computer Science;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3