Thyroid-related hormones as potential markers of hypoxia/ischemia

Author:

Tani Naoto,Ishikawa Mayumi,Watanabe Miho,Ikeda Tomoya,Ishikawa Takaki

Abstract

AbstractThis study aimed to investigate the usefulness of the thyroid-related hormones as markers of acute systemic hypoxia/ischemia to identify deaths caused by asphyxiation due to neck compression in human autopsy cases. The following deaths from pathophysiological conditions were examined: mechanical asphyxia and acute/subacute blunt head injury; acute/subacute non-head blunt injury; sharp instrument injury as the hemorrhagic shock condition; drowning as alveolar injury; burn; and death due to cardiac dysfunction. Blood samples were collected from the left and right cardiac chambers and iliac veins, and serum triiodothyronine (T3), thyroxine (T4), thyroglobulin (Tg), and thyroid-stimulating hormone (TSH) levels were measured using electrochemiluminescence immunoassays. Two types of thyroid cell lines were used to confirm independent thyroid function under the condition of hypoxia (3% O2). The human thyroid carcinoma cell line (HOTHC) cell line derived from human anaplastic thyroid carcinoma and the UD-PTC (sample of the second resection papillary thyroid carcinoma) cell line derived from human thyroid papillary adenoma, which forms Tg retention follicles, were used to examine the secretion levels of T3, T4, and Tg hormones. The results showed a strong correlation between T3 and T4 levels in all blood sampling sites, while the TSH and Tg levels were not correlated with the other markers. Serum T3 and T4 levels were higher in cases of mechanical asphyxia and acute/subacute blunt head injury, representing hypoxic and ischemic conditions of the brain as compared to those in other causes of death. In the thyroid gland cell line, T4, T3, and Tg levels were stimulated after exposure to hypoxia for 10–30 min. These findings suggest that systemic advanced hypoxia/ischemia may cause a rapid and TSH-independent release of T3 and T4 thyroid hormones in autopsy cases. These findings demonstrate that increased thyroid-related hormone (T3 and T4) levels in the pathophysiological field may indicate systemic hypoxia/ischemia.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3