Publisher
Springer Science and Business Media LLC
Reference26 articles.
1. Beik, F.P.A., Ahmadi-Asl, S.: Residual norm steepest descent based iterative algorithms for Sylvester tensor equations. J. Math. Model. 2, 115–131 (2015)
2. Beik, F.P.A., Movahed, F.S., Ahmadi-Asl, S.: On the krylov subspace methods based on the tensor format for positive definite sylvester tensor equations. Numer. Linear Algebra. Appl. 23, 444–466 (2016)
3. Chen, Z., Lu, L.Z.: A projection method and Kronecker product precondetioner for solving Sylvester tensor equations. Sci. China 55, 1281–1292 (2012)
4. Chen, Z., Lu, L.Z.: A gradient based iterative solutions for sylvester tensor equations. Math. Probl. Eng. Article ID 819479 (2013)
5. Freund, R.W.: A transpose-free quasi-minimum residual algorithm for non-Hermitian linear systems. SIAM J. Sci. Comput. 14, 470–482 (1993)