Electrophysical properties of the multiferroic PFN–ferrite composites obtained by spark plasma sintering and classical technology

Author:

Niemiec PrzemysławORCID,Bartkowska Joanna A.,Brzezińska Dagmara,Dercz Grzegorz,Stokłosa Zbigniew

Abstract

AbstractThe multiferroic (ferroelectric–ferromagnetic) composites (PFN–ferrite) based on ferroelectromagnetic PbFe1/2Nb1/2O3 powder and ferrite powder (zinc–nickel ferrite, NiZnFeO4) were obtained in the presented study. The ceramic PFN–ferrite composites consisted of 90% powder PFN material and 10% powder NiZnFeO4 ferrite. The ceramic powders were synthesized by the classical technological method using powder calcination, while densification of the composite powders (sintering) was carried by two different methods: (1) free sintering method (FS) and (2) spark plasma sintering (SPS). The composite PFN–ferrite samples were thermally tested, including DC electrical conductivity and dielectric properties. Besides, XRD, SEM, EDS (energy-dispersive spectrometry) and ferroelectric properties (hysteresis loop) of the composite samples were tested at room temperature. At the work, a comparison was made for the results measured for PFN–ferrite composite samples obtained by two methods. The X-ray examination of multiferroic ceramic composites confirmed the occurrence of the strong diffraction peaks derived from ferroelectric (PFN) matrix of composite as well as weak peaks induced by the ferrite component. At the same time, the studies showed the absence of other undesired phases. The results presented in this work revealed that the ceramic composite obtained by two different technological sintering methods (free sintering method and spark plasma sintering technique) can be the promising materials for functional applications, for example, in sensors for magnetic and electric fields.

Funder

University of Silesia in Katowice

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3