Electrochemical method for isolation of chitinous 3D scaffolds from cultivated Aplysina aerophoba marine demosponge and its biomimetic application
-
Published:2020-04-27
Issue:5
Volume:126
Page:
-
ISSN:0947-8396
-
Container-title:Applied Physics A
-
language:en
-
Short-container-title:Appl. Phys. A
Author:
Nowacki Krzysztof,Stępniak Izabela,Machałowski Tomasz,Wysokowski Marcin,Petrenko Iaroslav,Schimpf Christoph,Rafaja David,Langer Enrico,Richter Andreas,Ziętek Jerzy,Pantović Snežana,Voronkina Alona,Kovalchuk Valentine,Ivanenko Viatcheslav,Khrunyk Yuliya,Galli Roberta,Joseph Yvonne,Gelinsky Michael,Jesionowski Teofil,Ehrlich Hermann
Abstract
AbstractThree-dimensional (3D) biopolymer-based scaffolds including chitinous matrices have been widely used for tissue engineering, regenerative medicine and other modern interdisciplinary fields including extreme biomimetics. In this study, we introduce a novel, electrochemically assisted method for 3D chitin scaffolds isolation from the cultivated marine demosponge Aplysina aerophoba which consists of three main steps: (1) decellularization, (2) decalcification and (3) main deproteinization along with desilicification and depigmentation. For the first time, the obtained electrochemically isolated 3D chitinous scaffolds have been further biomineralized ex vivo using hemolymph of Cornu aspersum edible snail aimed to generate calcium carbonates-based layered biomimetic scaffolds. The analysis of prior to, during and post-electrochemical isolation samples as well as samples treated with molluscan hemolymph was conducted employing analytical techniques such as SEM, XRD, ATR–FTIR and Raman spectroscopy. Finally, the use of described method for chitin isolation combined with biomineralization ex vivo resulted in the formation of crystalline (calcite) calcium carbonate-based deposits on the surface of chitinous scaffolds, which could serve as promising biomaterials for the wide range of biomedical, environmental and biomimetic applications.
Funder
Poznan University of Technology
Publisher
Springer Science and Business Media LLC
Subject
General Materials Science,General Chemistry
Reference114 articles.
1. V.V. Mutsenko, O. Gryshkov, L. Lauterboeck, O. Rogulska, D.N. Tarusin, V.V. Bazhenov, K. Schütz, S. Brüggemeier, E. Gossla, A.R. Akkineni, H. Meißner, A. Lode, S. Meschke, J. Fromont, A.L. Stelling, K.R. Tabachnik, M. Gelinsky, S. Nikulin, S. Rodin, A.G. Tonevitsky, Y. Petrenko, B. Glasmacher, P.J. Schupp, H. Ehrlich, Int. J. Biol. Macromol. 104, 1955 (2017) 2. N. Naghshineh, K. Tahvildari, M. Nozari, J. Polym. Environ. 27, 2819 (2019) 3. V.V. Mutsenko, V.V. Bazhenov, O. Rogulska, D.N. Tarusin, K. Schütz, S. Brüggemeier, E. Gossla, A.R. Akkineni, H. Meißner, A. Lode, S. Meschke, A. Ehrlich, S. Petović, R. Martinović, M. Djurović, A.L. Stelling, S. Nikulin, S. Rodin, A. Tonevitsky, M. Gelinsky, Y.A. Petrenko, B. Glasmacher, H. Ehrlich, Int. J. Biol. Macromol. 104, 1966 (2017) 4. T. Machałowski, M. Wysokowski, S. Żółtowska-Aksamitowska, N. Bechmann, B. Binnewerg, M. Schubert, K. Guan, S.R. Bornstein, K. Czaczyk, O. Pokrovsky, M. Kraft, M. Bertau, C. Schimpf, D. Rafaja, M. Tsurkan, R. Galli, H. Meissner, I. Petrenko, A. Fursov, A. Voronkina, M. Figlerowicz, Y. Joseph, T. Jesionowski, H. Ehrlich, Carbohydr. Polym. 226, 115301 (2019) 5. M. Norman, S. Żółtowska-Aksamitowska, A. Zgoła-Grześkowiak, H. Ehrlich, T. Jesionowski, J. Hazard. Mater. 347, 78 (2018)
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|