On the electrical characteristics of Al/p-Si diodes with and without (PVP: Sn-TeO2) interlayer using current–voltage (I–V) measurements

Author:

Sabahi Namini Abbas,Shahedi Asl Mehdi,Pirgholi-Givi Gholamreza,Delbari Seyed Ali,Farazin Javid,Altındal Şemsettin,Azizian-Kalandaragh YasharORCID

Abstract

AbstractThe present study aims to investigate the effect of (PVP: Sn-TeO2) interfacial layer on the electrical parameters of the Al/p-Si diode. For this aim, (Sn-TeO2) nanostructures were developed by the ultrasound-assisted method, and both their electrical and optical characteristics were investigated by XRD, SEM, EDS, and UV–Vis methods. The bandgap of Sn-TeO2 was found as 4.65 eV from the (αhυ)2 vs () plot. The main electrical parameters of the Al/p-Si diodes with/ without (PVP: Sn-TeO2) interlayer, such as ideality factor (n), zero-bias barrier height (Φ0), and series resistance (Rs), were calculated by applying and comparing two methods of thermionic emission theory and Cheung’s functions. These results show that the presence of the (PVP: Sn-TeO2 interlayer, along with the increase of Φ0, and the decrease of n and Rs, led to a significant increment in the rectification of MPS when compared to MS diode. The current-transport mechanisms (CTMs) of them were examined through the forward LnIF − LnVF and reverse LnIRVR0.5 bias currents, and then, the Poole–Frenkel and Schottky field-lowering coefficients (β) were calculated and obtained its value from the theoretical and experimental methods showed that the mechanism of the reverse current of MS and MPS diodes is governing by the Schottky emission and Pool-Frenkel mechanism, respectively.

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3