High surface area g-C3N4 nanosheets as superior solar-light photocatalyst for the degradation of parabens

Author:

Stefa S.,Zografaki M.,Dimitropoulos M.,Paterakis G.,Galiotis C.,Sangeetha P.,Kiriakidis G.,Konsolakis M.,Binas V.ORCID

Abstract

AbstractThe rational design and development of highly-active photocatalytic materials for the degradation of dangerous chemical compounds, such as parabens, is one of the main research pillars in the field of photocatalysis. Graphitic carbon nitride (g-C3N4) is a 2D non-metal material and is considered one of the most promising photocatalysts, because of its peculiar physicochemical properties. In this work, porous g-C3N4 nanosheets (CNNs) were successfully prepared via thermal exfoliation of bulk g-C3N4 (CNB). A thorough physicochemical characterization analysis before and after the exfoliation process was performed, revealing the improved textural characteristics (surface area of 212 m2/g), chemical stability, and optical properties (wide band gap of 2.91 eV) of CNNs compared to the CNB. Then, both CNB and CNNs were comparatively assessed as photocatalysts for the degradation of methyl-, ethyl- and propylparaben (MP, EP, and PP), as well as of their mixture. CNNs with high surface area display superior photocatalytic performance under solar irradiation, offering > 95% degradation efficiency to all parabens, in contrast to the much inferior performance of CNB (< 30%). Several experimental parameters, involving catalyst concentration, initial concentration of parabens, and irradiation type were thoroughly investigated for the degradation of MP over CNNs. Moreover, various scavengers were employed to discriminate the role of different reactive species, revealing that superoxide anion radicals (·O2) play a pivotal role in the degradation process, in contrast to hydroxyl radicals (·OH). The present results pave the way towards the facile synthesis of high surface area CNNs with improved textural and electronic characteristics, which can be applied in various environmental applications.

Funder

Foundation for Research and Technology

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3