Unconventional computing based on magnetic tunnel junction

Author:

Cai Baofang,He Yihan,Xin Yue,Yuan Zhengping,Zhang Xue,Zhu ZhifengORCID,Liang Gengchiau

Abstract

AbstractThe conventional computing method based on the von Neumann architecture is limited by a series of problems such as high energy consumption, finite data exchange bandwidth between processors and storage media, etc., and it is difficult to achieve higher computing efficiency. A more efficient unconventional computing architecture is urgently needed to overcome these problems. Neuromorphic computing and stochastic computing have been considered to be two competitive candidates for unconventional computing, due to their extraordinary potential for energy-efficient and high-performance computing. Although conventional electronic devices can mimic the topology of the human brain, these require high power consumption and large area. Spintronic devices represented by magnetic tunnel junctions (MTJs) exhibit remarkable high-energy efficiency, non-volatility, and similarity to biological nervous systems, making them one of the promising candidates for unconventional computing. In this work, we review the fundamentals of MTJs as well as the development of MTJ-based neurons, synapses, and probabilistic-bit. In the section on neuromorphic computing, we review a variety of neural networks composed of MTJ-based neurons and synapses, including multilayer perceptrons, convolutional neural networks, recurrent neural networks, and spiking neural networks, which are the closest to the biological neural system. In the section on stochastic computing, we review the applications of MTJ-based p-bits, including Boltzmann machines, Ising machines, and Bayesian networks. Furthermore, the challenges to developing these novel technologies are briefly discussed at the end of each section.

Funder

National Key R&D Program of China

Shanghai Sailing Program

National Natural Science Foundation of China

Singapore Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science,General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3