Finite-size effects on the evolution of magnetic correlations and magnetocaloric properties of Pr0.4Bi0.2Sr0.4MnO3

Author:

Souza Anita D.,Vagadia Megha,Daivajna Mamatha D.

Abstract

AbstractThe effect of particle size reduction on the magnetic correlations of Pr0.4Bi0.2Sr0.4MnO3 nanoparticles prepared by top-down approach has been studied in detail. It was observed that as the milling time increases from 0 to 240 min, particle size decreases from 160 to 12 nm. Correspondingly it was observed that the ferromagnetic transition temperature (TC) drops (264 to 213 K) and saturation magnetization (MS) decreases (2.12–0.41 $${\upmu }_{\mathrm{B}}/\mathrm{f}.\mathrm{u}.$$ μ B / f . u . ) while coercivity (HC) shows a monotonous increase (0.18–1.5 kOe) as the particle size decreases due to increase in milling. The magnetic entropy change (ΔS) also decreases (2.41–0.24 J/kg-K) as particle size decreases indicating a strong correlation between magnetism and particle size. The metamagnetic M–H response of the bulk sample, which signifies the magnetic phase coexistence, is suppressed, and the nature of magnetic interactions demonstrates a transition from long range to short range. The observed characteristics emphasizes that with particle size reduction there is an increase in the surface disorder which can be explained by considering the core–shell model for the nanoparticles. Graphic abstract

Funder

Department of Science and Technology, Ministry of Science and Technology

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3