1. Bennett, M.A.: Rational approximation to algebraic numbers of small height: the Diophantine equation $$\vert ax^n-by^n\vert =1$$ | a x n - b y n | = 1 . J. Reine Angew. Math. 535, 1–49 (2001)
2. Bugeaud, Y., Hanrot, G., Mignotte, M.: Sur l’équation diophantienne $$\frac{x^n-1}{x-1}=y^q$$ x n - 1 x - 1 = y q . III. Proc. London Math. Soc. 84, 59–78 (2002)
3. Bugeaud, Y., Mignotte, M.: Sur l’équation diophantienne $$\frac{x^n-1}{x-1}=y^q$$ x n - 1 x - 1 = y q , II. C. R. Acad. Sci. Paris Sr. I Math. 328, 741–744 (1999)
4. Bugeaud, Y., Mignotte, M.: L’équation de Nagell–Ljunggren $$\frac{x^n-1}{x-1} = y^q$$ x n - 1 x - 1 = y q . Enseign. Math. 48, 147–168 (2002)
5. Bugeaud, Y., Mignotte, M., On the Diophantine equation $$(x^n-1), (x-1) = y^q$$ ( x n - 1 ) , ( x - 1 ) = y q with negative $$x$$ x . Number theory for the millennium, I (Urbana, IL, : 145–151. A K Peters, Natick, MA, 2000) (2002)