Increased AGE Cross-Linking Reduces the Mechanical Properties of Osteons

Author:

Elnunu Ihsan S.,Redmond Jessica N.,Obata Yoshihiro,Woolley William,Kammer David S.,Acevedo ClaireORCID

Abstract

AbstractThe osteon is the primary structural component of bone, contributing significantly to its unique toughness and strength. Despite extensive research on osteonal structure, the properties of osteons have not been fully investigated, particularly within the context of bone fragility diseases like type 2 diabetes mellitus (T2DM). This study aims to isolate osteons from bovine bone, simulate the effects of increased advanced glycation end-products (AGEs) in T2DM through ribosylation, and evaluate the mechanical properties of isolated osteons. Osteons extracted from the posterior section of bovine femur mid-diaphysis were processed to achieve a sub-millimeter scale for microscale imaging. Subsequently, synchrotron radiation micro-computed tomography was employed to precisely localize and isolate the osteon internally. While comparable elastic properties were observed between control and ribosylated osteons, the presence of AGEs led to decreased strain to failure. Young’s modulus was quantified (9.9 ± 4.9 GPa and 8.7 ± 3 GPa, respectively), aligning closely with existing literature. This study presents a novel method for the extraction and isolation of osteons from bone and shows the detrimental effect of AGEs at the osteonal level.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3