Energy efficient route planning for electric vehicles with special consideration of the topography and battery lifetime

Author:

Perger TheresiaORCID,Auer Hans

Abstract

AbstractIn contrast to conventional routing systems, which determine the shortest distance or the fastest path to a destination, this work designs a route planning specifically for electric vehicles by finding an energy-optimal solution while simultaneously considering stress on the battery. After finding a physical model of the energy consumption of the electric vehicle including heating, air conditioning, and other additional loads, the street network is modeled as a network with nodes and weighted edges in order to apply a shortest path algorithm that finds the route with the smallest edge costs. A variation of the Bellman-Ford algorithm, the Yen algorithm, is modified such that battery constraints can be included. Thus, the modified Yen algorithm helps solving a multi-objective optimization problem with three optimization variables representing the energy consumption with (vehicle reaching the destination with the highest state of charge possible), the journey time, and the cyclic lifetime of the battery (minimizing the number of charging/discharging cycles by minimizing the amount of energy consumed or regenerated). For the optimization problem, weights are assigned to each variable in order to put emphasis on one or the other. The route planning system is tested for a suburban area in Austria and for the city of San Francisco, CA. Topography has a strong influence on energy consumption and battery operation and therefore the choice of route. The algorithm finds different results considering different preferences, putting weights on the decision variable of the multi-objective optimization. Also, the tests are conducted for different outside temperatures and weather conditions, as well as for different vehicle types.

Publisher

Springer Science and Business Media LLC

Subject

General Energy

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3