Integrating random forest and synthetic aperture radar improves the estimation and monitoring of woody cover in indigenous forests of South Africa

Author:

Qabaqaba McebisiORCID,Naidoo Laven,Tsele Philemon,Ramoelo Abel,Cho Moses Azong

Abstract

AbstractWoody canopy cover (CC) is important for characterising terrestrial ecosystems and understanding vegetation dynamics. The lack of accurate calibration and validation datasets for reliable modelling of CC in the indigenous forests in South Africa contributes to uncertainties in carbon stock estimates and limits our understanding of how they might influence long-term climate change. The aim of this study was to develop a method for monitoring CC in the Dukuduku indigenous forest in South Africa. Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar (PALSAR) global mosaics of 2008, 2015, and 2018, polarimetric features, and Grey Level Co-occurrence Matrix (GLCMs) were used. Machine learning models Random Forest (RF) vs Support Vector Machines (SVM) were developed and calibrated using Collect Earth Online (CEO) data, a free and open-access land monitoring tool developed by the Food and Agriculture Organisation (FAO). The addition of GLCMs produced the highest accuracy in 2008, R2 (RMSE) = 0.39 (36.04%), and in 2015, R2 (RMSE) = 0.51 (27.82%), and in 2018, only SAR variables gave the highest accuracy R2 (RMSE) = 0.55 (29.50). The best-performing models for 2008, 2015, and 2018 were based on RF. During the ten-year study period, shrubland and wooded grassland had the highest transition, at 6% and 13%, respectively. The observed changes in the different canopies provide valuable insights into the vegetation dynamics of the Dukuduku indigenous forest. The modelling results suggest that the CEO calibration data can be improved by integrating airborne LiDAR data.

Funder

National Research Foundation

University of Pretoria

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Environmental Science (miscellaneous),Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3