Abstract
AbstractPanorama photogrammetry, the process of analyzing panoramic images, has gained popularity in close-range photogrammetry for 3D reconstruction over the past decade. Initially, researchers utilized cylindrical or spherical panoramic images created through specialized cameras or conventional ones with rectilinear lenses. However, these methods were hindered by the high cost of panorama equipment and the need for manual reconstruction. Consequently, there's a growing demand for automated algorithms capable of reconstructing 3D point clouds from stitched panorama images. This study aims to provide a cost-effective solution for automatic 3D point cloud reconstruction from panoramas. The study is divided into two parts; it first outlines an image acquisition strategy for capturing overlapping perspective images to facilitate accurate panorama generation. Subsequently, it introduces an automated algorithm for 3D point cloud reconstruction from panorama images. The process utilizes the KAZE feature detector for feature detection and introduces a novel feature matching approach for matching panorama images. Accuracy assessment of the reconstructed 3D point clouds was done using three methods: Line Segment Based approach, yielding RMSE errors of 34.2mm and 39mm for dataset-1 and dataset-2 respectively, No-Reference 3D Point Cloud Quality Assessment, resulting in quality scores of 8.5939 and 7.4535 for dataset-1 and dataset-2 respectively, and M3C2 distance method computed value of 0.091059 and 0.165179 respectively, indicating high quality of the generated point clouds.
Funder
Manipal Academy of Higher Education, Manipal
Publisher
Springer Science and Business Media LLC