Abstract
AbstractIn this paper, we propose a method that estimates the variance of an imputed estimator in a multistage sampling design. The method is based on the rescaling bootstrap for multistage sampling introduced by Preston (Surv Methodol 35(2):227–234, 2009). In his original version, this resampling method requires that the dataset includes only complete cases and no missing values. Thus, we propose two modifications for applying this method to nonresponse and imputation. These modifications are compared to other modifications in a Monte Carlo simulation study. The results of our simulation study show that our two proposed approaches are superior to the other modifications of the rescaling bootstrap and, in many situations, produce valid estimators for the variance of the imputed estimator in multistage sampling designs.
Funder
GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability
Reference42 articles.
1. Alfons A, Filzmoser P, Hulliger B, Kolb J-P, Kraft S, Münnich R, Templ M (2011) Synthetic data generation of silc data, Technical report, AMELI deliverable D6.2. https://www.uni-trier.de/index.php?id=24676&L=2
2. Bruch C (2016) Varianzschätzung unter Imputation und bei komplexen Stichprobendesigns, PhD thesis, Trier University. https://ubt.opus.hbz-nrw.de/frontdoor/index/index/year/2016/docId/734
3. Bruch C (2019) Applying the rescaling bootstrap under imputation: a simulation study. J Stat Comput Simul 89(4):641–659. https://doi.org/10.1080/00949655.2018.1563898
4. Bruch C, Münnich R, Zins S ( 2011) Variance estimation for complex surveys, Technical report, AMELI deliverable D3.1. https://www.uni-trier.de/index.php?id=24676&L=2
5. Burgard JP, Kolb J-P, Münnich R, Merkle H (2017) Synthetic data for open and reproducible methodological research in social sciences and official statistics. AStA Wirtschafts- und Sozialstatistisches Archiv 11(3–4):233–244