Applying the rescaling bootstrap under imputation for a multistage sampling design

Author:

Bruch Christian

Abstract

AbstractIn this paper, we propose a method that estimates the variance of an imputed estimator in a multistage sampling design. The method is based on the rescaling bootstrap for multistage sampling introduced by Preston (Surv Methodol 35(2):227–234, 2009). In his original version, this resampling method requires that the dataset includes only complete cases and no missing values. Thus, we propose two modifications for applying this method to nonresponse and imputation. These modifications are compared to other modifications in a Monte Carlo simulation study. The results of our simulation study show that our two proposed approaches are superior to the other modifications of the rescaling bootstrap and, in many situations, produce valid estimators for the variance of the imputed estimator in multistage sampling designs.

Funder

GESIS – Leibniz-Institut für Sozialwissenschaften e.V.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Statistics, Probability and Uncertainty,Statistics and Probability

Reference42 articles.

1. Alfons A, Filzmoser P, Hulliger B, Kolb J-P, Kraft S, Münnich R, Templ M (2011) Synthetic data generation of silc data, Technical report, AMELI deliverable D6.2. https://www.uni-trier.de/index.php?id=24676&L=2

2. Bruch C (2016) Varianzschätzung unter Imputation und bei komplexen Stichprobendesigns, PhD thesis, Trier University. https://ubt.opus.hbz-nrw.de/frontdoor/index/index/year/2016/docId/734

3. Bruch C (2019) Applying the rescaling bootstrap under imputation: a simulation study. J Stat Comput Simul 89(4):641–659. https://doi.org/10.1080/00949655.2018.1563898

4. Bruch C, Münnich R, Zins S ( 2011) Variance estimation for complex surveys, Technical report, AMELI deliverable D3.1. https://www.uni-trier.de/index.php?id=24676&L=2

5. Burgard JP, Kolb J-P, Münnich R, Merkle H (2017) Synthetic data for open and reproducible methodological research in social sciences and official statistics. AStA Wirtschafts- und Sozialstatistisches Archiv 11(3–4):233–244

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3