Adopting automated bug assignment in practice — a longitudinal case study at Ericsson

Author:

Borg MarkusORCID,Jonsson Leif,Engström Emelie,Bartalos Béla,Szabó Attila

Abstract

Abstract[Context] The continuous inflow of bug reports is a considerable challenge in large development projects. Inspired by contemporary work on mining software repositories, we designed a prototype bug assignment solution based on machine learning in 2011-2016. The prototype evolved into an internal Ericsson product, TRR, in 2017-2018. TRR’s first bug assignment without human intervention happened in April 2019. [Objective] Our study evaluates the adoption of TRR within its industrial context at Ericsson, i.e., we provide lessons learned related to the productization of a research prototype within a company. Moreover, we investigate 1) how TRR performs in the field, 2) what value TRR provides to Ericsson, and 3) how TRR has influenced the ways of working. [Method] We conduct a preregistered industrial case study combining interviews with TRR stakeholders, minutes from sprint planning meetings, and bug-tracking data. The data analysis includes thematic analysis, descriptive statistics, and Bayesian causal analysis. [Results] TRR is now an incorporated part of the bug assignment process. Considering the abstraction levels of the telecommunications stack, high-level modules are more positive while low-level modules experienced some drawbacks. Most importantly, some bug reports directly reach low-level modules without first having passed through fundamental root-cause analysis steps at higher levels. On average, TRR automatically assigns 30% of the incoming bug reports with an accuracy of 75%. Auto-routed TRs are resolved around 21% faster within Ericsson, and TRR has saved highly seasoned engineers many hours of work. Indirect effects of adopting TRR include process improvements, process awareness, increased communication, and higher job satisfaction. [Conclusions] TRR has saved time at Ericsson, but the adoption of automated bug assignment was more intricate compared to similar endeavors reported from other companies. We primarily attribute the difference to the very large size of the organization and the complex products. Key facilitators in the successful adoption include a gradual introduction, product champions, and careful stakeholder analysis.

Funder

Lund University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3