Incremental software product line verification - A performance analysis with dead variable code

Author:

Kröher Christian,Flöter Moritz,Gerling Lea,Schmid Klaus

Abstract

AbstractVerification approaches for Software Product Lines (SPL) aim at detecting variability-related defects and inconsistencies. In general, these analyses take a significant amount of time to provide complete results for an entire, complex SPL. If the SPL evolves, these results potentially become invalid, which requires a time-consuming re-verification of the entire SPL for each increment. However, in previous work we showed that variability-related changes occur rather infrequently and typically only affect small parts of a SPL. In this paper, we utilize this observation and present an incremental dead variable code analysis as an example for incremental SPL verification, which achieves significant performance improvements. It explicitly considers changes and partially updates its previous results by re-verifying changed artifacts only. We apply this approach to the Linux kernel demonstrating that our fastest incremental strategy takes only 3.20 seconds or less for most of the changes, while the non-incremental approach takes 1,020 seconds in median. We also discuss the impact of different variants of our strategy on the overall performance, providing insights into optimizations that are worthwhile.

Funder

Bundesministerium für Bildung und Forschung

Universität Hildesheim

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparing the intensity of variability changes in software product line evolution;28th ACM International Systems and Software Product Line Conference;2024-09-02

2. Software vulnerability detection method based on code attribute graph presentation and Bi-LSTM neural network extraction;International Conference on Computer Network Security and Software Engineering (CNSSE 2024);2024-06-06

3. Comparing the intensity of variability changes in software product line evolution;Journal of Systems and Software;2023-09

4. Analysis and Propagation of Feature Revisions in Preprocessor-based Software Product Lines;2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER);2023-03

5. Software Engineering Code Workshop Based on B-RRT FND Algorithm for Deep Program Understanding Perspective;Journal of Sensors;2022-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3