Experimental derivation of a condition monitoring test cycle for machine tool feed drives

Author:

Benker MaximilianORCID,Junker Sebastian,Ellinger Johannes,Semm Thomas,Zaeh Michael F.

Abstract

AbstractDue to their critical influence on manufacturing accuracy, machine tool feed drives and the monitoring of their condition has been a research field of increasing interest for several years already. Accurate and reliable estimates of the current condition of the machine tool feed drive’s components ball screw drive (BSD) and linear guide shoes (LGSs) are expected to significantly enhance the maintainability of machine tools, which finally leads to economic benefits and smoother production. Therefore, many authors performed extensive experiments with different sensor signals, features and components. Most of those experiments were performed on simplified test benches in order to gain genuine and distinct insights into the correlations between the recorded sensor signals and the investigated fault modes. However, in order to build the bridge between real use cases and scientific findings, those investigations have to be transferred and performed on a more complex test bench, which is close to machine tools in operation. In this paper, a condition monitoring test cycle is developed for such a test bench. The developed test cycle enables the recording of a re-producible data basis, on which models for the condition monitoring of BSDs and LGSs can be based upon.

Funder

horizon 2020 framework programme

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3