Computer vision application for industrial Li-ion battery module disassembly

Author:

Gerlitz EduardORCID,Enslin Louis-Elias,Fleischer Jürgen

Abstract

AbstractAutomated robot-assisted disassembly is essential for the flexible disassembly of Li-ion battery modules for economic and safety reasons. In such a case, a CAD model for the planning process is of immense benefit. The geometric uncertainties due to the breathing of the Li-ion cells as well as the presence of component tolerances underline the importance of a sensor-based detection approach to determine the actual state of the battery module, which is crucial to ensure an automated and reliable disassembly process. In this paper, we present a method for 3D camera-based localization of points on deformed battery modules, aiding in identifying support points for milling operations in robot-assisted disassembly cells. This separation operation planning employs a CAD model, and our introduced computer vision “data processing pipeline”—a systematic series of processing steps—bridges the gap between the CAD model and the actual battery module. This involves capturing the module using a 3D camera and subsequently registering its points with the CAD model’s points. Central to this process are two algorithms: The Bayesian Coherent Point Drift (BCPD) algorithm ensures accurate non-rigid registration, while TEASER++ aids in reducing computational time. We demonstrate the effectiveness of these combined algorithms in our pipeline through rigorous testing and metrics, evidencing that a balance between accuracy and computational speed can be attained by adjusting point density.

Funder

Ministerium für Umwelt, Klima und Energiewirtschaft Baden-Württemberg

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3