Reducing energy costs and CO2 emissions by production system energy flexibility through the integration of renewable energy

Author:

Materi SergioORCID,D’Angola Antonio,Enescu Diana,Renna Paolo

Abstract

AbstractIn recent years, the production of renewable energy has increased continuously to reduce fossil fuel consumption and CO2 emissions and to increase energy efficiency. The challenge of industries is to integrate renewable energy systems into the existing power system of manufacturing industries. In the energy flexibility approach, the manufacturing energy demand is aligned with renewable energy availability, to improve the use of the renewable energy source. This paper aims to investigate a manufacturing system supplied by a photovoltaic plant coupled with a battery storage system. A basic storage model has been developed and implemented to pursue this issue. The model is applied in the simplified case of a manufacturing system composed of a cutting numerical control machine, which can adapt the cutting speed to align the power needed to the power supplied by the photovoltaic plant. However, the model can be extended to realistic production cases characterized by complex systems as long as the time evolution of energy consumptions are known in detail. The introduction of battery storage allows reducing the cutting speed fluctuations, improving the cutting life derived from the fatigue effect. This solution reduces the costs of the machine and improves the forecasting of the means needed for the manufacturing system. Finally, a detailed analysis of greenhouse gas reduction is discussed.

Funder

Università degli Studi della Basilicata

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference56 articles.

1. Eurostat (2018) Electricity production, consumption and market overview. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_production,_consumption_and_market_overview&oldid=340868#Electricity_generation

2. Eurostat (2019) Renewable energy statistics. https://ec.europa.eu/eurostat/statistics-explained/index.php/Renewable_energy_statistics#Renewable_energy_produced_in_the_EU_increased_by_two_thirds_in_2007-2017

3. IPCC (2014) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge

4. Gutowski T, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. In: Proceedings of the 13th CIRP international conference on life cycle engineering, LCE 2006. Lueven, pp 623–628

5. Li C, Chen X, Tang Y, Li L (2017) Selection of optimum parameters in multi-pass face milling for maximum energy efficiency and minimum production cost. J Clean Prod 140:1805–1818. https://doi.org/10.1016/j.jclepro.2016.07.086

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decarbonization in the European steel industry: Strategies, risks, and commitments;Environmental Challenges;2024-08

2. Sustainable Energy Sources and Financial Development Nexus—Perspective of European Union Countries in 2013–2021;Energies;2024-07-07

3. A Review of Renewable Energy Communities: Concepts, Scope, Progress, Challenges, and Recommendations;Sustainability;2024-02-21

4. Cloud Resolution and Solar Location Diversity;2024 32nd Southern African Universities Power Engineering Conference (SAUPEC);2024-01-24

5. Renewables;Energy-Related Material Flow Simulation in Production and Logistics;2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3