Effect of a strain rate dependent material modeling of a steel on the prediction accuracy of a numerical deep drawing process

Author:

Vallaster EvaORCID,Wiesenmayer Sebastian,Merklein Marion

Abstract

AbstractIn the production of sheet metal components, batch and process fluctuations cause deviations in the resulting component properties, which often lead to production rejects. To counteract this inline, the computing time for predicting the process result and optimizing the process parameters must be very short, which is why analytical models are advantageous. A large database is usually required for modeling, and numerical simulations are well suited for generating it. The stamping velocity is a process parameter possibly varying, but strain rate dependency of the material often is neglected in numerical simulations. The objective of this study is to analyze the effects of strain rate dependent material modeling on the simulation accuracy of a sheet metal forming process. Therefore, uniaxial tensile tests and layer compression tests at different strain rates are conducted on the steel HC340LA. Based on this, the material behavior is captured in a strain rate dependent material card, which is used for the numerical simulation of a deep drawing process of a geometry with complex shape. For the validation of the model, experiments are carried out and being compared with the computational results in terms of force–displacement curves and part geometry. Furthermore, numerical investigations are used to analyze if drawbead height and blankholder force have an influence on the strain rate distribution and whether this affects the process force.

Funder

AiF Projekt

Europäische Forschungs­gesellschaft für Blechverarbeitung

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3