Exploring the Unknown: Evaluating ChatGPT's Performance in Uncovering Novel Aspects of Plastic Surgery and Identifying Areas for Future Innovation

Author:

Lim BryanORCID,Seth Ishith,Xie Yi,Kenney Peter Sinkjaer,Cuomo Roberto,Rozen Warren M.

Abstract

Abstract Background Artificial intelligence (AI) has emerged as a powerful tool in various medical fields, including plastic surgery. This study aims to evaluate the performance of ChatGPT, an AI language model, in elucidating historical aspects of plastic surgery and identifying potential avenues for innovation. Methods A comprehensive analysis of ChatGPT's responses to a diverse range of plastic surgery-related inquiries was performed. The quality of the AI-generated responses was assessed based on their relevance, accuracy, and novelty. Additionally, the study examined the AI's ability to recognize gaps in existing knowledge and propose innovative solutions. ChatGPT’s responses were analysed by specialist plastic surgeons with extensive research experience, and quantitatively analysed with a Likert scale. Results ChatGPT demonstrated a high degree of proficiency in addressing a wide array of plastic surgery-related topics. The AI-generated responses were found to be relevant and accurate in most cases. However, it demonstrated convergent thinking and failed to generate genuinely novel ideas to revolutionize plastic surgery. Instead, it suggested currently popular trends that demonstrate great potential for further advancements. Some of the references presented were also erroneous as they cannot be validated against the existing literature. Conclusion Although ChatGPT requires major improvements, this study highlights its potential as an effective tool for uncovering novel aspects of plastic surgery and identifying areas for future innovation. By leveraging the capabilities of AI language models, plastic surgeons may drive advancements in the field. Further studies are needed to cautiously explore the integration of AI-driven insights into clinical practice and to evaluate their impact on patient outcomes. Level of Evidence V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266

Funder

Monash University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3