Understanding CMIP6 biases in the representation of the Greater Horn of Africa long and short rains

Author:

Schwarzwald KevinORCID,Goddard Lisa,Seager Richard,Ting Mingfang,Marvel Kate

Abstract

AbstractThe societies of the Greater Horn of Africa (GHA) are vulnerable to variability in two distinct rainy seasons, the March–May ‘long’ rains and the October–December ‘short’ rains. Recent trends in both rainy seasons, possibly related to patterns of low-frequency variability, have increased interest in future climate projections from General Circulation Models (GCMs). However, previous generations of GCMs historically have poorly simulated the regional hydroclimate. This study conducts a process-based evaluation of simulations of the long and short rains in CMIP6, the latest generation of GCMs. Key biases in CMIP5 remain or are worsened, including long rains that are too short and weak and short rains that are too long and strong. Model biases are driven by a complex set of related oceanic and atmospheric factors, including simulations of the Walker Circulation. Biased wet short rains in models are connected with Indian Ocean zonal sea surface temperature (SST) gradients that are too warm in the west and convection that is too deep. Models connect equatorial African winds with the strength of the short rains, though in observations a robust connection is primarily found in the long rains. Model mean state biases in the timing of the western Indian Ocean SST seasonal cycle are associated with certain rainfall timing biases, though both biases may be due to a common source. Simulations driven by historical SSTs (AMIP runs) often have larger biases than fully coupled runs. A path towards using biases to better understand uncertainty in projections of GHA rainfall is suggested.

Funder

ACToday

Columbia World Project

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3