Extreme rainfall in Northern China in September 2021 tied to air–sea multi-factors

Author:

Sun Yue,Li JianpingORCID,Wang Hao,Li Ruize,Tang Xinxin

Abstract

AbstractThe September rainfall over Northern China (NC) in 2021 was the heaviest since 1961 and had unprecedented socioeconomic impacts. Holding the hypothesis that the drivers of extreme climate events usually contain extreme factors, we firstly propose the Ranking Attribution Method (RAM) to find the possible air–sea multi-factors responsible for this rainfall event. Via the atmospheric bridges of zonal-vertical circulation and Rossby wave energy propagation, the remote factors of warm sea surface temperature anomalies (SSTA) over the tropical Atlantic, cold SSTA over the tropical Pacific, Southern Annular Mode-like pattern in the Southern Hemisphere and North Pacific Oscillation-like pattern in the Northern Hemisphere jointly strengthened the Maritime Continent (MC) convection and Indian monsoon (IM). Through meridional-vertical circulation, the intensified MC convection enhanced the subtropical high over southern China and induced ascending motion over NC. The local factor of extreme air acceleration in the east Asian upper-level jet entrance region further anchored the location of the southwest-northeast rain belt. The strengthened IM and subtropical high over southern China induced considerable moisture transport to the rain belt via two moisture channels. The combined effect of these extreme dynamic and moisture conditions formed this unprecedented rainfall event. This study suggests that the RAM can effectively reveal the factors that contributed to this extreme rainfall event, which could provide a new pathway for a better understanding of extreme climate events.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

National Program on Global Change and Air-Sea Interaction

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3