Seasonal and regional contrasts of future trends in interannual arctic climate variability

Author:

Kolbe Marlen,Bintanja Richard,van der Linden Eveline C.

Abstract

AbstractFuture changes in interannual variability (IAV) of Arctic climate indicators such as sea ice and precipitation are still fairly uncertain. Alongside global warming-induced changes in means, a thorough understanding of IAV is needed to more accurately predict sea ice variability, distinguish trends and natural variability, as well as to reduce uncertainty around the likelihood of extreme events. In this study we rank and select CMIP6 models based on their ability to replicate observations, and quantify simulated IAV trends (1981–2100) of Arctic surface air temperature, evaporation, precipitation, and sea ice concentration under continued global warming. We argue that calculating IAV on grid points before area-averaging allows for a more realistic picture of Arctic-wide changes. Large model ensembles suggest that on shorter time scales (30  years), IAV of all variables is strongly dominated by natural variability (e.g. 93% for sea ice area in March). Long-term trends of IAV are more robust, and reveal strong seasonal and regional differences in their magnitude or even sign. For example, IAV of surface temperature increases in the Central Arctic, but decreases in lower latitudes. Arctic precipitation variability increases more in summer than in winter; especially over land, where in the future it will dominantly fall as rain. Our results emphasize the need to address such seasonal and regional differences when portraying future trends of Arctic climate variability.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3