Skip to main content

Advertisement

Log in

On the development of a coupled regional climate–vegetation model RCM–CLM–CN–DV and its validation in Tropical Africa

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a regional climate system model RCM–CLM–CN–DV and its validation over Tropical Africa. The model development involves the initial coupling between the ICTP regional climate model RegCM4.3.4 (RCM) and the Community Land Model version 4 (CLM4) including models of carbon–nitrogen dynamics (CN) and vegetation dynamics (DV), and further improvements of the models. Model improvements derive from the new parameterization from CLM4.5 that addresses the well documented overestimation of gross primary production (GPP), a refinement of stress deciduous phenology scheme in CN that addresses a spurious LAI fluctuation for drought-deciduous plants, and the incorporation of a survival rule into the DV model to prevent tropical broadleaf evergreens trees from growing in areas with a prolonged drought season. The impact of the modifications on model results is documented based on numerical experiments using various subcomponents of the model. The performance of the coupled model is then validated against observational data based on three configurations with increasing capacity: RCM–CLM with prescribed leaf area index and fractional coverage of different plant functional types (PFTs); RCM–CLM–CN with prescribed PFTs coverage but prognostic plant phenology; RCM–CLM–CN–DV in which both the plant phenology and PFTs coverage are simulated by the model. Results from these three models are compared against the FLUXNET up-scaled GPP and ET data, LAI and PFT coverages from remote sensing data including MODIS and GIMMS, University of Delaware precipitation and temperature data, and surface radiation data from MVIRI and SRB. Our results indicate that the models perform well in reproducing the physical climate and surface radiative budgets in the domain of interest. However, PFTs coverage is significantly underestimated by the model over arid and semi-arid regions of Tropical Africa, caused by an underestimation of LAI in these regions by the CN model that gets exacerbated through vegetation dynamics in RCM–CLM–CN–DV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abiodun BJ, Pal JS, Afiesimama EA, Gutowski WJ, Adedoyin A (2008) Simulation of West African monsoon using regCM3. II. Impacts of deforestation and desertification. Theor Appl Climatol 93:245–261

    Article  Google Scholar 

  • Afiesimama EA, Pal JS, Abiodun BJ, Gutowski WJ, Adedoyin A (2006) Simulation of West African monsoon using the RegCM3. Part I: Model validation and interannual variability. Theor Appl Cimatol. doi:10.1007/s00704-005-0202-8

    Google Scholar 

  • Alo C, Wang GL (2008a) Hydrological impact of the potential future vegetation response to climate changes projected by 8 GCMs. J. Geophys. Re. Biogeosci. 113:G03011. doi:10.1029/2007JG000598

    Google Scholar 

  • Alo C, Wang GL (2008b) Potential future changes of the terrestrial ecosystem based on climate projections by eight general circulation models. JGR –. Biogeosciences 113:G01004. doi:10.1029/2007JG000528

    Google Scholar 

  • Alo CA, Wang GL (2010) Role of vegetation dynamics in regional climate predictions over western Africa. Clim Dyn 35:907–922. doi:10.1007/s00383-010-0744-z

    Article  Google Scholar 

  • Anthes RA, Hsie EY, Kuo YH (1987) Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4). National Center for Atmospheric Research technical note TN-282 + STR, NCAR, Boulder

  • Bala G, Caldeira K, Mirin A et al (2006) Biogeophysical effects of CO2 fertilization on global climate. Tellus B 58:5

    Article  Google Scholar 

  • Bonan GB, Lawrence PJ, Oleson KW et al (2011) Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J Geophys Res 116:G02014. doi:10.1029/2010JG001593

    Google Scholar 

  • Bonan GB, Oleson KW, Fisher RA et al (2012) Reconciling leaf physiological traits and canopy flux data: Use of the TRY and FLUXNET databases in the Community Land Model version 4. J Geophys Res 117:G02026. doi:10.1029/2011JG001913

    Google Scholar 

  • Brovkin V, Claussen M, Petoukhov V, Ganopolski A (1998) On the stability of the atmosphere–vegetation system in the Sahara/Sahel region. J Geophys Res 103(D24):31613–31624

    Article  Google Scholar 

  • Castillo CKG, Levis S, Thornton P (2012) Evaluation of the new CNDV option of the Community Land Model: effects of dynamic vegetation and interactive nitrogen on CLM4 means and variability. J Clim 25(11):3702–3714

    Article  Google Scholar 

  • Claussen M (1998) On multiple solutions of the atmosphere–vegetation system in present-day climate. Glob Change Biol 4:549–559

    Article  Google Scholar 

  • Claussen M, Kubatzki C, Brovkin V et al (1999) Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophys Res Lett 26(14):2037–2040

    Article  Google Scholar 

  • Cook KH, Vizy EK (2008) Effects of 21st c. climate change on the Amazon rain forest. J Clim 21:542–560

    Article  Google Scholar 

  • Cox PM, Betts RA, Jones CD et al (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  Google Scholar 

  • Crucifix M, Betts RA, Cox PM (2005) Vegetation and climate variability: a GCM modelling study. Clim Dyn 24:457–467

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Delire C, Foley JA, Thompson (2004) Long-term internal variability in a coupled atmosphere–biosphere model. J Clim (in press)

  • Delire C, De Noblet-Ducoudre N, Sima A, Gouriand I (2011) Vegetation dynamics enhancing long-term climate variability confirmed by two models. J Clim 24:2238–2257. doi:10.1175/2010JCLI3664.1

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy P (1993) Biosphere–atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. Technical report, National Center for Atmospheric Research Tech Note NCAR.TN-387 + STR, NCAR, Boulder

  • Diro GT, Rauscher SA, Giorgi F, Tompkins AM (2012) Sensitivity of seasonal climate and diurnal precipitation over Central America to land and sea surface schemes in RegCM4. Clim Res 52:31–48

    Article  Google Scholar 

  • Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48(21):2313–2335

    Article  Google Scholar 

  • Foley JA, Prentice IC, Ramankutty N et al (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob Biogeochem Cycles 10(4):603–628

    Article  Google Scholar 

  • Foley JA, Levis S, Prentice IC, Pollard D, Thompson SL (1998) Coupling dynamic models of climate and vegetation. Glob Change Biol 5:561–579

    Article  Google Scholar 

  • Gao X, Shi Y, Zhang D, Wu J, Giorgi F, Ji Z, Wang Y (2012) Uncertainties in monsoon precipitation projections over China: results from two high-resolution RCM simulations. Clim Res 52:213–226

    Article  Google Scholar 

  • Gerber S, Joos F, Prentice IC (2004) Sensitivity of a dynamic global vegetation model to climate and atmospheric CO2. Glob Change Biol 10:1223–1239

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29

    Article  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787

    Article  Google Scholar 

  • Grell GA, Dudhia J, Stauffer DR (1994) Description of the fifth generation Penn State/NCAR Mesoscale Model (MM5). NCAR Technical Note NCAR/TN-398+STR, p 121. doi:10.5065/D60Z716B

  • Heald CL, Wilkinson MJ, Monsoon RK, Alo CA, Wang GL, Guenther A (2009) Response of isoprene emission to ambient CO2 changes and implications for global budgets. Glob Change Biol 15:1127–1140

    Article  Google Scholar 

  • Holtslag AAM, de Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575

    Article  Google Scholar 

  • Irizarry-Ortiz M, Wang GL, Eltahir EAB (2003) Role of the biosphere in the mid-Holocene climate of West Africa. JGR-Atmospheres. doi:10.1029/2001JD000989

    Google Scholar 

  • Jenkins GS, Gaye AT, Sylla B (2005) Late 20th century attribution of drying trends in the Sahel from the Regional Climate Model (RegCM3). Geophys Res Lett 32:L22705. doi:10.1029/2005GL024225

    Article  Google Scholar 

  • Jung M, Reichstein M, Ciais P, Seneviratne S, Sheffield J et al (2010) Recent decline in global land evapotranspiration trend due to limited moisture supply. Nature 467:951–954

    Article  Google Scholar 

  • Jung M, Reichstein M, Margolis HA et al (2011) Global patterns of land–atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res Biogeosci. doi:10.1029/2010JG001566

    Google Scholar 

  • Kiehl J, Hack J, Bonan G, Boville B, Breigleb B, Williamson D, Rasch P (1996) Description of the NCAR Community Climate Model (CCM3). National Center for Atmospheric Research tech note NCAR/TN-420 + STR, NCAR, Boulder

  • Lawrence PJ, Chase TN (2007) Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J Geophys Res 112:G01023. doi:10.1029/2006JG000168

    Google Scholar 

  • Lawrence DM, Slater AG (2008) Incorporating organic soil into a global climate model. Clim Dyn 30:145–160

    Article  Google Scholar 

  • Lawrence DM, Slater AG (2009) The contribution of snow condition trends to future ground climate. Clim Dyn. doi:10.1007/s00382-009-0537-4

    Google Scholar 

  • Lawrence PJ, Oleson KW, Flanner MG et al (2011) Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. J Adv Model Earth Syst 3:1. doi:10.1029/2011MS00045

    Google Scholar 

  • Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge corrected, global precipitation. Int J Climatol 10:111–127

    Article  Google Scholar 

  • Levis S, Foley JA, Pollard D (1999) Potential high-latitude vegetation feedbacks on CO2-induced climate change. Geophys Res Lett 26:747–750

    Article  Google Scholar 

  • Levis S, Bonan GB, Vertenstein M, Oleson KW (2004) The Community Land Model’s Dynamic Vegetation Model (CLM–DGVM): technical description and user’s guide. NCAR technical note TN-459 + IA

  • Lucht W, Schaphoff S, Erbrecht T, Heyder U, Cramer W (2006) Terrestrial vegetation under redistribution and carbon balance under climate change. Carbon Balance Manag. doi:10.1186/1750-0680-1-6

    Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H et al (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    Article  Google Scholar 

  • Niu G-Y, Yang Z-L (2007) An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J Geophys Res 112:D21101. doi:10.1029/2007JD008674

    Article  Google Scholar 

  • Notaro M, Vavrus S, Liu Z (2007) Global vegetation and climate change due to future increases in CO2 as projected by a fully coupled model with dynamic vegetation. J. Climate 20:70–90

    Article  Google Scholar 

  • Oleson KW, Dai Y, Bonan G et al (2004) Technical description of the Community Land Model (CLM). Technical report NCAR/TN-461 + STR, National Center for Atmospheric Research, Boulder

  • Oleson KW, Niu GY, Yang ZL et al (2008) Improvements to the Community Land Model and their impact on the hydrological cycle. J Geophys Res 113(G1):G01021. doi:10.1029/2007jg000563

    Google Scholar 

  • Oleson KW, Lawrence DM, Gordon B et al (2010) Technical description of version 4.0 of the Community Land Model (CLM). Technical report NCAR/TN-478 + STR, National Center for Atmospheric Research, Boulder

  • Oleson KW, Lawrence DM, Bonan GB et al (2013) Technical description of version 4.5 of the Community Land Model (CLM). NCAR technical note NCAR/TN-503 + STR. National Center for Atmospheric Research, Boulder

  • Omotosho JB, Abiodun BJ (2007) A numerical study of moisture build-up and rainfall over West Africa. Meteorol Appl 14:209–225

    Article  Google Scholar 

  • Otieno VO, Anyah RO (2012) Effects of land use changes on climate in the Greater Horn of Africa. Clim Res 52:77–95

    Article  Google Scholar 

  • Paeth H, Born K, Girmes R, Podzun R, Jacob D (2009) Regional climate change in tropical and northern Africa due to greenhouse forcing and land use changes. J Clim 22(1):114–132

    Article  Google Scholar 

  • Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res 105(D24):29579–29594. doi:10.1029/2000JD900415

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X et al (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88(9):1395–1409

    Article  Google Scholar 

  • Patricola CM, Cook KH (2007) Dynamics of the West African monsoon under mid-Holocene precessional forcing: regional climate model simulations. J Clim 20:694–716

    Article  Google Scholar 

  • Patricola CM, Cook KH (2008) Atmosphere/vegetation feedbacks: a mechanism for abrupt climate change over Northern Africa. J Geophys Rese Atmos. 113:D18102

    Article  Google Scholar 

  • Posselt R, Müller R, Stöckli R, Trentmann J (2011) CM SAF surface radiation MVIRI data set 1.0—monthly means/daily means/hourly means. In: Satellite application facility on climate monitoring. doi:10.5676/EUM_SAF_CM/RAD_MVIRI/V001

  • Posselt R, Mueller RW, Stöckli R, Trentmann J (2012) Remote sensing of solar surface radiation for climate monitoring—the CM-SAF retrieval in international comparison. Remote Sens Environ 118:186–198

    Article  Google Scholar 

  • Qian T, Dai A, Trenberth KE, Oleson KW (2006) Simulation of global land surface conditions from 1948 to 2004. Part I: forcing data. J Hydrometeor 7:953–975

    Google Scholar 

  • Roberts JM, Cabral OMR, da Costa JP, McWilliam ALC, Sa TDA (1996) An overview of the leaf area index and physiological measurements during ABRACOS. In: Gash JHC, Nobre CA, Roberts JM, Victoria RL (eds) Amazon deforestation and climate. Wiley, Chichester, pp 287–306

  • Root TL, Price JT, Hall KR et al (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. doi:10.1038/nature01333

    Article  Google Scholar 

  • Schaphoff S, Lucht W, Gerten D, Sitch S, Cramer W, Prentice IC (2006) Terrestrial biosphere carbon storage under alternative climate projections. Clim Change. doi:10.1007/s10584-005-9002-5

    Google Scholar 

  • Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, Sykes MT et al (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9:161–185

    Article  Google Scholar 

  • Solmon F, Giorgi F, Liousse C (2006) Aerosol modeling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain. Tellus Ser B Chem Phys Meterol 58:51–72

    Article  Google Scholar 

  • Steiner A, Pal JS, Rauscher S et al (2009) Land surface coupling in regional climate simulations of the West African monsoon. Clim Dyn 33(6):869–892. doi:10.1007/s00382-009-0543-6

    Article  Google Scholar 

  • Sylla MB, Gaye AT, Pal JS, Jenkins GS, Bi XQ (2009) High resolution simulations of West Africa climate using Regional Climate Model (RegCM3) with different lateral boundary conditions. Theor Appl Climatol. doi:10.1007/s00704-009-0110-4

    Google Scholar 

  • Sylla MB, Dell’Aquila A, Ruti PM, Giorgi F (2010) Simulation of the intraseasonal and the interannual variability of rainfall over West Africa with RegCM3 during the monsoon period. Int J Climatol 30(12):1865–1883. doi:10.1002/joc.2029

    Google Scholar 

  • Sylla B, Pal JS, Wang G, Lawrence P (2015) Impact of land surface characterization on regional climate modeling over West Africa. Clim Dyn (in press)

  • Thornton PE, Doney SC, Lindsay K et al (2009) Carbon–nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere–ocean general circulation model. Biogeosciences 6:2099–2120

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass-flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800

    Article  Google Scholar 

  • Trenberth K, Dai A, Rasmsussen R, Parsons D (2003) The changing character of precipitation. Am Meteorol Soc 84:1205–1217

    Article  Google Scholar 

  • Wang GL (2004) A conceptual modeling study on biosphere-atmosphere interactions and its implications for physically based climate modeling. J Clim 17:2572–2583

    Article  Google Scholar 

  • Wang GL, Alo CC (2012) Changes in precipitation seasonality in West Africa predicted by RegCM3 and the impact of dynamic vegetation feedback. Int J Geophys 2012:1–10. Article ID 597205. doi:10.1155/2012/597205

    Google Scholar 

  • Wang GL, Eltahir EAB (2000a) The role of ecosystem dynamics in enhancing the low-frequency variability of the Sahel rainfall. Water Resour Res 36(4):1013–1021

    Article  Google Scholar 

  • Wang GL, Eltahir EAB (2000b) Ecosystem dynamics and the Sahel drought. Geophys Res Lett 27(6):795–798

    Article  Google Scholar 

  • Wang GL, Eltahir EAB (2002) Impact of CO2 concentration changes on the biosphere-atmosphere system in West Africa. Glob Change Biol 8:1169–1182

    Article  Google Scholar 

  • Wang GL, Eltahir EAB, Foley JA, Pollard D, Levis S (2004) Decadal variability of rainfall in the Sahel: results from the coupled GENESIS-IBIS atmosphere-biosphere model. Clim Dyn 22:625–637. doi:10.1007/s00382-004-0411-3

    Article  Google Scholar 

  • Wang GL, Sun SS, Mei R (2011) Vegetation dynamics contributes to the multi-decadal variability of precipitation in the Amazon region. Geophys Res Lett 38:L19703. doi:10.1029/2011GL049017

  • Willmott CJ, Matsuura K (1995) Smart interpolation of annually averaged air temperature in the United States. J Appl Meteorol 34:2577–2586

    Article  Google Scholar 

  • Winter JM, Pal JS, Eltahir EAB (2009) Coupling of integrated biosphere simulator to Regional Climate Model Version 3. J Clim. doi:10.1175/2008JCLI2541.1

    Google Scholar 

  • Xue Y, Shukla J (1993) The influence of land surface properties on Sahel climate. Part I Desertif J Clim 6:2232–2245

    Google Scholar 

  • Xue Y, De Sales F, Vasic R, Mechooso CR, Prince SD, Arakawa (2010) Global and temporal characteristics of seasonal climate/vegetation biophysical process (VBP) interactions. J Clim 23:1411–1433

    Article  Google Scholar 

  • Yu M, Wang GL (2014) Impact of bias correction of lateral boundary conditions on regional climate projections in West Africa. Clim Dyn 42:2521–2538. doi:10.1007/s00382-013-1853-2

    Article  Google Scholar 

  • Yu M, Wang GL, Parr DT, Ahmed KF (2014) Future changes of the terrestrial ecosystem based on a dynamic vegetation model driven with RCP8.5 climate projections from 19 GCMs. Clim Chang 127:257–271. doi:10.1007/s10584-014-1249-2

  • Zakey AS, Solmon F, Giorgi F (2006) Implementation and testing of a desert dust module in a regional climate model. Atmos Chem Phys 6:4687–4704

    Article  Google Scholar 

  • Zeng X, Decker M (2009) Improving the numerical solution of soil moisture-based Richards equation for land models with a deep or shallow water table. J Hydrometeorl 10:308–319

    Article  Google Scholar 

  • Zeng N, Neelin JD, Lau KW, Tucker CJ (1999) Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science 286:1537–1540

    Article  Google Scholar 

  • Zhou L, Tucker CJ, Myneni RB et al (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106:20069–20083

    Article  Google Scholar 

  • Zhu Z, Bi J, Pan Y et al (2013) Global data sets of Vegetation Leaf Area Index (LAI)3 g and Fraction of Photosynthetically Active Radiation (FPAR)3 g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3 g) for the period 1981 to 2011. Remote Sens 5:927–948

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by funding from the NSF (AGS-1049017, AGS-1049186, AGS-1063986, and AGS-1064008). NCAR is sponsored by the NSF. Constructive comments from two anonymous reviewers greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiling Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Yu, M., Pal, J.S. et al. On the development of a coupled regional climate–vegetation model RCM–CLM–CN–DV and its validation in Tropical Africa. Clim Dyn 46, 515–539 (2016). https://doi.org/10.1007/s00382-015-2596-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2596-z

Keywords

Navigation