Assessment of the changing role of lower tropospheric temperature advection under arctic amplification using a large ensemble climate simulation dataset

Author:

Hori Masatake E.ORCID,Yoshimori MasakazuORCID

Abstract

AbstractThe role of temperature advection in the Arctic lower troposphere under changing level of global warming is investigated using a large-ensemble climate simulation dataset. Taking the 30-year climatology of the non-warming simulation (HPB-NAT) as a reference, we examined the difference in temperature advection under changing basic states of the historical experiment (HPB) and 2 K and 4 K warming experiments (HFB-2K and HFB-4K) and decomposed them into terms related to dynamical changes, thermodynamical changes and the eddy term which is a covariance term related to the effect of sub-monthly transient eddies. Under the HPB experiment, it was found that the total change in advection hangs in a balance between the positive signal located along the sea-ice boundary in the North Atlantic and along the Eurasian continent driven by a stronger dynamical term and a negative signal in the thermodynamical term and eddy term. It is found that with the progression of global warming the dynamical term of advection increases due to changes in the large-scale atmospheric circulation, but the thermodynamical term and eddy term decrease due to weaker temperature gradient and increased sensible heat flux from the newly opened ice-free ocean, respectively. Atmospheric temperature advection terms related to large-scale atmospheric circulation partially cancels one another, and the relative importance of the eddy term diverging locally induced sensible heat from the newly opened ice-free ocean dominates as global warming progresses.

Funder

Arctic Challenge for Sustainability II Program

The University of Tokyo

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3