Mechanism of skillful seasonal surface chlorophyll prediction over the southern Pacific using a global earth system model

Author:

Ham Yoo-GeunORCID,Joo Young-Sik,Park Jong-Yeon

Abstract

AbstractThis study investigates the physical mechanism involved in an Earth system model (ESM)-based global marine biogeochemical prediction system providing successful forecasts of surface chlorophyll concentrations over the southern Pacific. The significant correlation skill of the surface chlorophyll concentration over the south-central Pacific (SP region, 160°–110° W, 10°–5° S) appears up to a 15-month lead. In contrast to the previously known role of the vertical nutrient supply on the predictive chlorophyll concentration forecasts, the NO3 budget analysis indicates that this prediction skill over the SP region is mostly controlled by the meridional advection of nutrients. Further analysis indicates that the controlling mechanisms involved in chlorophyll variability over the SP region can be explained by atmospheric and oceanic dynamics during the ENSO events. During La Nina, equatorial NO3 anomalies are increased due to enhanced equatorial upwelling, and the climatological southward current then advects nutrient-rich waters from the equator to the SP region $$\left( {{\text{i.e.,\,positive}}\, - \overline{v}\frac{{\partial {\text{NO}}_{{3}}^{\prime } }}{\partial y}} \right)$$ i.e.,\,positive - v ¯ NO 3 y . In addition, anomalous easterly surface winds blow over the SP region as a circulation response to atmospheric diabatic heating anomalies during La Nina, which leads to southward current anomalies over the surface-layer ocean. This advects high climatological NO3 over the tropics to the subtropical south Pacific, which increases the NO3 anomalies $$\left( {{\text{i.e.,\, positive}} - v^{\prime}\frac{{\partial \overline{{{\text{NO}}_{3} }} }}{\partial y}} \right)$$ i.e.,\, positive - v NO 3 ¯ y . This positive NO3 advection over the SP region is realistically simulated only at lead times shorter than 9 month, and the multi-season persistency of the nutrients contributes to the surface chlorophyll bloom at lead times longer than 1 year.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3