Contrasting contributions of surface hydrological pathways in convection permitting and parameterised climate simulations over Africa and their feedbacks on the atmosphere

Author:

Folwell Sonja S.ORCID,Taylor Christopher M.ORCID,Stratton Rachel A.ORCID

Abstract

AbstractThe partitioning of rainfall at the land surface into interception, infiltration and surface runoff plays an important role in the water cycle as it controls the time scale at which water returns to the atmosphere. Rainfall intensity is of crucial importance to this partition. High resolution convection permitting models significantly improve simulated sub-daily rainfall intensity distributions, in particular those associated with convective rainfall in the tropics. Here we compare the land surface hydrological response in a pair of 10-year simulations over an African domain performed using the Met Office Unified Model: a typical configuration using parameterised convection operating at 25 km and the second a high resolution convection permitting simulation at 4.5 km with the parametrized convection switched off. Overall pan-African interception in the convection permitting scheme is 70% lower, whilst surface runoff is 43% higher than the parameterized convection model. These changes are driven by less frequent, but more intense rainfall with a 25% increase in rainfall above 20 mm h−1 in the 4.5 km model. The parameterised scheme has a ~ 50% canopy water contribution to evaporative fraction which is negligible in the convection permitting scheme. Conversely, the convection permitting scheme has higher throughfall and infiltration leading to higher soil moisture in the weeks following rain resulting in a 30–50% decrease in the daytime sensible heat flux. We examine how important the sub-grid rainfall parameterisation in the model is for the differences between the two configurations. We show how, switching a convective parameterisation off can substantially impact land surface behaviour.

Funder

department for international development/nerc

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3