Specific, nondestructive, and durable adhesion primer for polyolefins

Author:

Morgese Giulia,Siegmann Konstantin,Winkler Martin

Abstract

AbstractGluing polyolefins [e.g., polyethylene (PE) and polypropylene (PP)] results in a very challenging task. The main reason relies on their low surface energy, which reduces the affinity between the polyolefin surface and the chosen adhesive. To tackle this problem, the most commonly used solutions are physical surface treatments, such as plasma, corona, and flame, which introduce hydrophilic moieties on the plastics surface, thus increasing their surface energy. These approaches require special setups, are unspecific, and can induce material degradation. Furthermore, they provide a transient solution, making the storage of pretreated substrates not recommended. In this work, we developed an easy-to-apply primer for durable bonding of adhesives on PE and PP, as robust alternative to physical treatments. Our primer contains a surface-anchoring moiety and an adhesive-binding group to covalently react with the polyolefin substrate and with the glue. As a surface-anchoring moiety, we chose the perfluorophenylazide (PFPA), which is known to undergo a C–H insertion reaction upon UV activation, while as adhesive-binding groups, we selected OH functions, which can covalently react with the most common commercially available glues. When these two features (i.e., PFPA and OH) are combined in a single molecule, the reaction with the substrate does not occur and the molecule is only physisorbed, inducing no adhesion improvement. Chemisorption only occurs with bicomponent formulations, comprising a hydrophobic trifunctional PFPA and a polymer bearing OH and PFPA groups. Those induced improved adhesion on PP compared to the golden standard plasma with polyurethane-based and two-component epoxy adhesives. Storing the coated substrates at room temperature for up to two months did not alter the adhesion performance, thus further ascribing the developed primers as a promising alternative to plasma treatment.

Funder

Innosuisse - Schweizerische Agentur für Innovationsförderung

ZHAW Zurich University of Applied Sciences

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3