Effect of agricultural management system (“cash crop”, “livestock” and “climate optimized”) on nitrous oxide and ammonia emissions

Author:

Well ReinhardORCID,Ruoss Nicolas,Grosz Balazs,Brunotte Joachim,Buchen-Tschiskale Caroline,Lewicka-Szczebak Dominika,Schäfer Bernhard C.

Abstract

AbstractThe study aimed to measure soil-atmosphere N2O fluxes and their controlling factors, as well as NH3 emissions and yields for two soils (silt loam and clay loam) in three management systems over two years under subsequent wheat and maize cultivation. The management systems were characterized as follows: (1) cash crop (C) with mineral fertilizer and conventional tillage; (2) livestock (L) with biogas residue fertilization and its incorporation prior to sowing in maize and reduced tillage; and (3) climate optimized (O) with minimum tillage, 8-year crop rotation, with biogas residue fertilization, in maize without incorporation in clay loam soil or incorporation by strip-tillage prior to seeding in silt loam soil. Stable isotope ratios of N2O and mineral N were determined to identify N2O processes. Within the organically fertilized maize treatments, cumulative N2O fluxes were highest in the O-system treatments of both sites (4.0 to 9.4 kg N ha− 1 a− 1), i.e. more than twice as high as in the L-system (1.5 to 3.1 kg N ha− 1 a− 1). Below root-strip till fertilizer application did not enhance N2O fluxes. Fluxes with mineral fertilization of wheat (1.1 to 3.1 kg N ha− 1 a− 1) were not different from those with organic fertilization. Isotopic values of emitted N2O revealed that bacterial denitrification dominated most of the peak flux events, while the N2O/(N2 + N2O) ratio of denitrification was mostly between 0.1 and 0.5. It can be concluded that, contrary to the intention to lower greenhouse gas fluxes by the O-system management, the highest N2O fluxes occurred in the O-system without biogas digestate incorporation in maize. With respect to NH3 fluxes, we could confirm that the application of digestate application in growing crops without incorporation or late incorporation in fertilization before sowing induces high fluxes. The beneficial aspects of the O-system including more stable soil structure and resource conservation, are thus potentially counteracted by increased N2O and NH3 emissions.

Funder

Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3