A rapid prototyping approach for custom training of autologous ear reconstruction

Author:

Mussi ElisaORCID,Servi MichaelaORCID,Facchini FlavioORCID,Volpe YaryORCID,Furferi RoccoORCID

Abstract

AbstractAutologous ear reconstruction is the preferred treatment in case of partial or total absence of the patient external ear. This kind of surgery can be really challenging since precise replication of complex three-dimensional structure of the ear is crucial to provide the patients with aesthetically consistent reconstructed anatomy. Therefore, the results strongly depends on the “artistic skills” of the surgeon who is in charge to carry out a three-dimensional sculpture, which resembles the shape of a normal ear. In this context, the definition of a preoperative planning and simulation process based on the patient's specific anatomy may help the surgeon in speeding up the ear reconstruction process and, at the same time, to obtain better results, thus allowing a superior surgical outcome. In the present work the main required features for performing an effective simulation of the ear reconstruction are identified and a strategy for their interactive design and customization is devised with the perspective of a semi-automatization of the procedure. In detail, the paper provides a framework which start from the acquisition of 3D data from both a healthy ear of the patient (or, if not available e.g. due to bilateral microtia of the ear of one of his parents or from a template) and of costal cartilage. Acquired 3D data are properly processed to define the anatomical elements of the ear and to find, using nesting-based algorithms, the costal cartilage portions to be used for carving the ear itself. Finally, 3D printing is used to create a mockup of the ear elements and a prototype of the ear to be reconstructed is created. Validated on a test case, the devised procedure demonstrate its effectiveness.

Funder

Università degli Studi di Firenze

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3