Kinin receptors regulate skeletal muscle regeneration: differential effects for B1 and B2 receptors

Author:

Martins Leonardo,Amorim Weslley Wallace,Gregnani Marcos Fernandes,de Carvalho Araújo Ronaldo,Qadri Fatimunnisa,Bader Michael,Pesquero João Bosco

Abstract

Abstract Objective and design After traumatic skeletal muscle injury, muscle healing is often incomplete and produces extensive fibrosis. Bradykinin (BK) reduces fibrosis in renal and cardiac damage models through the B2 receptor. The B1 receptor expression is induced by damage, and blocking of the kallikrein-kinin system seems to affect the progression of muscular dystrophy. We hypothesized that both kinin B1 and B2 receptors could play a differential role after traumatic muscle injury, and the lack of the B1 receptor could produce more cellular and molecular substrates for myogenesis and fewer substrates for fibrosis, leading to better muscle healing. Material and methods To test this hypothesis, tibialis anterior muscles of kinin receptor knockout animals were subjected to traumatic injury. Myogenesis, angiogenesis, fibrosis, and muscle functioning were evaluated. Results Injured B1KO mice showed a faster healing progression of the injured area with a larger amount of central nucleated fiber post-injury when compared to control mice. In addition, they exhibited higher neovasculogenic capacity, maintaining optimal tissue perfusion for the post-injury phase; had higher amounts of myogenic markers with less inflammatory infiltrate and tissue destruction. This was followed by higher amounts of SMAD7 and lower amounts of p-SMAD2/3, which resulted in less fibrosis. In contrast, B2KO and B1B2KO mice showed more severe tissue destruction and excessive fibrosis. B1KO animals had better results in post-injury functional tests compared to control animals. Conclusions We demonstrate that injured skeletal muscle tissues have a better repair capacity with less fibrosis in the presence of B2 receptor and absence of B1 receptor, including better performances in functional tests.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Deutscher Akademischer Austauschdienst

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology,Immunology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3