Increased miR-124-3p alleviates type 2 inflammatory response in allergic rhinitis via IL-4Rα

Author:

Liu Qian,Shen Yang,Xiao Yifang,Xiang Hong,Chu Ling,Wang Tiansheng,Liu Honghui,Tan Guolin

Abstract

Abstract Background and objectives miRNAs play a crucial role in regulating immune responses. However, the effect of miR-124-3p on type 2 inflammation in allergic rhinitis (AR) is unclear. We aimed to study the immune regulation of miR-124-3p in AR and the mechanisms involved. Methods The direct interaction between miR-124-3p and IL-4Rα was confirmed through a dual-luciferase reporter assay. In vitro splenic lymphocytes from mice and peripheral blood mononuclear cells (PBMCs) from healthy individuals were cultured and treated with miR-124-3p mimic/inhibitor. Twenty-four female C57BL/C mice were divided into four groups: control, AR model, miR-124-3p agomir, and miR-124-3p antagomir groups (n = 6 per group). The allergic responses were evaluated based on the number of sneezing and nasal scratching, the serum HDM-specific IgE (sIgE) levels, and the degree of nasal mucosa eosinophil infiltration. The expression of IL-4Rα, p-STAT6, and type 2 inflammatory cytokines (IL-4, IL-5 and IL-13) in lymphocytes or nasal mucosa was determined by qPCR, western blotting, flow cytometry, immunohistochemistry and immunofluorescence. Results miR-124-3p directly targets the 3'UTR of IL-4Rα. The miR-124-3p mimic lowered the IL-4Rα, p-STAT6, IL-4, IL-5, and IL-13 expression levels in both mouse splenic lymphocytes and human PBMCs in vitro, and the miR-124-3p inhibitor rescued these changes. Furthermore, the miR-124-3p agomir decreased the levels of IL-4Rα and IL-4 in nasal mucosa, Th2 differentiation in spleen, and allergic response in AR mice. Moreover, the miR-124-3p antagonist increased the IL-4Rα and IL-4 levels and further aggravated the allergic responses. Conclusions miR-124-3p might attenuate type 2 inflammation in AR by regulating IL-4Rα signaling, and miR-124-3p may be a promising new target in AR treatment.

Funder

Changsha Natural Science Foundation

Hunan Natural Science Foundation in China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3