Mock samples resolve biases in diversity estimates and quantitative interpretation of zooplankton metabarcoding data

Author:

Ershova Elizaveta A.ORCID,Wangensteen Owen S.,Falkenhaug Tone

Abstract

AbstractMetabarcoding is a rapidly developing tool in marine zooplankton ecology, although most zooplankton surveys continue to rely on visual identification for monitoring purposes. We attempted to resolve some of the biases associated with metabarcoding by sequencing a 313-b.p. fragment of the COI gene in 34 “mock” samples from the North Sea which were pre-sorted to species level, with biomass and abundance estimates obtained for each species and taxonomic group. The samples were preserved either in 97% ethanol or dehydrated for 24 h in a drying oven at 65 °C (the routine way of preserving samples for dry weight measurements). The visual identification yielded a total of 59 unique holoplanktonic and 16 meroplanktonic species/taxa. Metabarcoding identified 86 holoplanktonic and 124 meroplanktonic species/taxa, which included all but 3 of the species identified visually as well as numerous species of hard-to-identify crustaceans, hydrozoan jellyfish, and larvae of benthic animals. On a sample-to-sample basis, typically 90–95% of visually registered species were recovered, but the number of false positives was also high. We demonstrate robust correlations of relative sequence abundances to relative biomass for most taxonomic groups and develop conversion factors for different taxa to account for sequencing biases. We then combine the adjusted sequencing data with a single bulk biomass measurement for the entire sample to produce a quantitative parameter akin to species biomass. When examined with multivariate statistics, this parameter, which we call BWSR (biomass-weighed sequence reads) showed very similar trends to species biomass and comparable patterns to species abundance, highlighting the potential of metabarcoding not only for biodiversity estimation and mapping of presence/absence of species but also for quantitative assessment of zooplankton communities.

Funder

Norges Forskningsråd

Institute Of Marine Research

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3