Evidence of nerve agent VX exposure in rat plasma by detection of albumin-adducts in vitro and in vivo

Author:

Kranawetvogl Tamara,Kranawetvogl Andreas,Scheidegger Lisa,Wille Timo,Steinritz Dirk,Worek Franz,Thiermann Horst,John HaraldORCID

Abstract

AbstractVX is a highly toxic organophosphorus nerve agent that reacts with a variety of endogenous proteins such as serum albumin under formation of adducts that can be targeted by analytical methods for biomedical verification of exposure. Albumin is phosphonylated by the ethyl methylphosphonic acid moiety (EMP) of VX at various tyrosine residues. Additionally, the released leaving group of VX, 2-(diisopropylamino)ethanethiol (DPAET), may react with cysteine residues in diverse proteins. We developed and validated a microbore liquid chromatography-electrospray ionization high-resolution tandem mass spectrometry (µLC-ESI MS/HR MS) method enabling simultaneous detection of three albumin-derived biomarkers for the analysis of rat plasma. After pronase-catalyzed cleavage of rat plasma proteins single phosphonylated tyrosine residues (Tyr-EMP), the Cys34(-DPAET)Pro dipeptide as well as the rat-specific LeuProCys448(-DPAET) tripeptide were obtained. The time-dependent adduct formation in rat plasma was investigated in vitro and biomarker formation during proteolysis was optimized. Biomarkers were shown to be stable for a minimum of four freeze-and-thaw cycles and for at least 24 h in the autosampler at 15 °C thus making the adducts highly suited for bioanalysis. Cys34(-DPAET)Pro was superior compared to the other serum biomarkers considering the limit of identification and stability in plasma at 37 °C. For the first time, Cys34(-DPAET)Pro was detected in in vivo specimens showing a time-dependent concentration increase after subcutaneous exposure of rats underlining the benefit of the dipeptide disulfide biomarker for sensitive analysis.

Funder

Deutsche Forschungsgemeinschaft

Sanitätsakademie der Bundeswehr

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3